CBCS SCHEME

	ě		
USN		17	AE/AS72
Seventh Semester B.E. Degree Examination, Jan./Feb. 2021			
Computational Fluid Dynamics			
T.'			Iarks: 100
Time: 5 ms.			
Note: Answer any FIVE full questions, choosing ONE full question from each module.			
_		Module-1 Elaborate philosophy of CFD and what are the applications of CFD related to a	aeronautical
1	a.	angineering.	(10 Marks)
	b.	What are the governing equations in CFD? Explain them with their conservation	form using
		integral form and differential form.	(10 Marks)
		OR	
2	a.	What is the essence of discritization? Explain with neat diagram.	(08 Marks)
	b.	Explain: (i) Dirichlet and Neumann Boundary Condition (ii) No slip boundary	(12 Marks)
		(iii) Viscous flow and inviscid flow	()
		Module-2	
3	a.	What is Taylor series approach for the construction of finite difference quotients	
		derivative term $\left(\frac{\partial u}{\partial x}\right)$.	(10 Marks)
	b.	Write short note on stability properties of explicit scheme on CFD.	(10 Marks)
	υ.		
1	0	OR Explain Lax-Wandroff technique with artificial viscosity.	(08 Marks)
4	a. b.	Glimpse on Jacobean, Gauss Seidal and SLDR techniques.	(12 Marks)
Module-3			
5	a.	Explain the difference between structured and unstructured grids with neat sketch	hes.
J	a.		(08 Marks) (12 Marks)
	b.	Elaborate on surface grid generation.	(12 Marks)
	OR		
6	a.	With any of the grid generation technique. Explain unstructured grid generation	(16 Marks)
	h	Explain the role of grid control functions.	(04 Marks)
	Ĝ	Module-4	
7	a.	Explain multi block adaptive structured grid generation.	(16 Marks)
,	b.		(04 Marks)
		OR	
8	a.	Describe general transformation of equation from a physical plane to comput	ational plane
		with neat sketches.	(16 Marks) (04 Marks)
	b.	Define parallel processing.	(011.10110)
		Module-5	(10 Marks)
9	a.	Briefly explain finite volume technique with neat diagram.	(10 Marks)
	b.	. Write short notes on cell Vertex formulation.	,

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

OR'

(10 Marks)

(10 Marks)

Explain flux vector splitting.
Elaborate on: (i) Numerical dissipation (ii) Numerical dispersion 10